LESSON PLAN-PHYSICS

Name of Assistant Professor: Dr.Durgesh

Class & Section: B.Sc. III Year: 6th Sem (CS & NM)

Subject: Atomic and Molecular Spectroscopy

Lesson Plan: 16 Weeks (From January, 2025 to April, 2025).

Week-1,2,	Week-1,2,3,4					
Unit—1 Historical Background of atomic spectroscopy						
WEEK	DAY	TOPIC				
1	1	Introduction to early observations, emission and absorption spectra, atomic spectra				
	2	Wave number, Spectrum of hydrogen atom in Balmer Series				
	3	Bohr atomic model (Bohr's Postulates), Spectra of Hydrogen atom				
	4	Introduction to early observations, emission and absorption spectra, atomic spectra				
	5	Wave number, Spectrum of hydrogen atom in Balmer Series				
	6	Bohr atomic model (Bohr's Postulates), Spectra of Hydrogen atom				
2	1	Explanation of spectral series in hydrogen atom, un-quantized states and continuous spectra				
	2	Spectral series in absorption spectra, effect of nuclear motion on line spectra (correction of finite nuclear mass)				
	3	Variation in Rydberg constant due to finite mass, short comings of Bohr's theory				
	4	Explanation of spectral series in hydrogen atom, un-quantized states and continuous spectra				
	5	Spectral series in absorption spectra, effect of nuclear motion on line spectra (correction of finite nuclear mass)				
	6	Variation in Rydberg constant due to finite mass, short comings of Bohr's theory				
3	1	Wilson sommerfeld quantization rule, de-Broglie interpretation of Bohr quantization law				
	2	Bohr's corresponding principle, Short comings of Bohr- Sommerfeld theory				
	3	Vector atom model; space quantization, electron spin				
	4	Wilson sommerfeld quantization rule, de-Broglie interpretation of Bohr quantization law				
	5	Bohr's corresponding principle, Short comings of Bohr-Sommerfeld theory				
	6	Vector atom model; space quantization, electron spin				
4	1	Coupling of orbital and spin angular momentum				
	2	Spectroscopic terms and their notation, quantum numbers associated with vector atom model				

LESSON-PLAN PHYSICS

3	Transition Probability and selection rules
4	Coupling of orbital and spin angular momentum
5	Spectroscopic terms and their notation, quantum numbers associated with vector atom model
6	Transition Probability and selection rules

Week-5.6	Week-5,6,7,8				
Unit- 2 Vector Atom Model (Single Valance Electron)					
		,			
WEEK	DAY	TOPIC			
5	1	Orbital magnetic dipole moment (Bohr magneton), behavior of magnetic dipole in external magnetic field			
	2	Larmor's precession and theorem			
	3	Penetrating and non-penetrating orbits, penetrating orbits on the classical model; quantum defect			
	4	Orbital magnetic dipole moment (Bohr magneton), behavior of magnetic dipole in external magnetic field			
	5	Larmor's precession and theorem			
	6	Penetrating and non-penetrating orbits, penetrating orbits on the classical model; quantum defect			
6	1	Spin orbit interaction energy of the single valance electron			
	2	Spin orbit interaction for penetrating and non-penetrating orbits			
	3	Quantum mechanical relativity correction, Hydrogen fine spectra			
	4	Spin orbit interaction energy of the single valance electron,			
	5	Spin orbit interaction for penetrating and non-penetrating orbits			
	6	Quantum mechanical relativity correction, Hydrogen fine spectra			
7	1	Main features of Alkali Spectra and their theoretical interpretation			
	2	Term series and limits, Rydberg-Ritz combination principle			
	3	Absorption spectra of Alkali atoms			
	4	Main features of Alkali Spectra and their theoretical interpretation			
	5	Term series and limits, Rydberg-Ritz combination principle			
	6	Absorption spectra of Alkali atoms			
8	1	Observed doublet fine structure in the spectra of alkali metals and its Interpretation			
	2	Intensity rules for doublets			
	3	Comparison of Alkali spectra and Hydrogen spectrum.			
	4	Observed doublet fine structure in the spectra of alkali metals and its Interpretation			
	5	Intensity rules for doublets			
	6	Comparison of Alkali spectra and Hydrogen spectrum			

LESSON-PLAN PHYSICS

Week-9,1	Week-9,10,11,12				
Unit- 3 Vector Atom Model (Two Valance Electron)					
Ţ					
WEEK	DAY	TOPIC			
9	1	Essential features of spectra of Alkaline-earth elements			
	2	Vector model for two valance electron atom: application of spectra			
	3	Coupling Schemes; LS or Russell – Saunders Coupling Scheme			
	4	Essential features of spectra of Alkaline-earth elements			
	5	Vector model for two valance electron atom: application of spectra			
	6	Coupling Schemes; LS or Russell – Saunders Coupling Scheme			
10	1	JJ coupling scheme Lande interval rule			
	2	Interaction energy in L-S coupling (sp, pd configuration)			
	3	Pauli principal and periodic classification of the element			
	4	JJ coupling scheme Lande interval rule			
	5	Interaction energy in L-S coupling (sp, pd configuration)			
	6	Pauli principal and periodic classification of the element			
11	1	Interaction energy in JJ Coupling (sp, pd configuration)			
	2	Equivalent and non-equivalent electrons			
	3	Two valance electron system-spectral terms of non- equivalent and equivalent electrons			
	4	Interaction energy in JJ Coupling (sp, pd configuration)			
	5	Equivalent and non-equivalent electrons			
	6	Two valance electron system-spectral terms of non- equivalent and equivalent electrons			
12	1	Comparison of spectral terms in L-S and J-J coupling			
	2	Hyperfine structure of spectral lines and its origin			
	3	Isotope effect, nuclear spin			
	4	Comparison of spectral terms in L-S and J-J coupling			
	5	Hyperfine structure of spectral lines and its origin			
	6	Isotope effect, nuclear spin			

LESSON-PLAN PHYSICS

Week- 13,14,15,16					
Unit – 4 Atom in External Field and Molecular Physics					
WEEK	DAY	TOPIC			
13	1	Zeeman Effect (normal and Anomalous)			
	2	Experimental set-up for studying Zeeman effect			
	3	Explanation of normal Zeeman effect(classical and quantum mechanical)			
	4	Zeeman Effect (normal and Anomalous)			
	5	Experimental set-up for studying Zeeman effect			
	6	Explanation of normal Zeeman effect(classical and quantum mechanical)			
14	1	Explanation of anomalous Zeeman effect (Lande g-factor)			
	2	Zeeman pattern of D1 and D2 lines of Na atom			
	3	Paschen-Back effect of a single valence electron system			
	4	Explanation of anomalous Zeeman effect (Lande g-factor)			
	5	Zeeman pattern of D1 and D2 lines of Na atom			
	6	Paschen-Back effect of a single valence electron system			
15	1	Weak field Stark effect of Hydrogen atom			
	2	General Considerations in molecular physics, Electronic States of Diatomic Molecules,			
	3	Rotational Spectra (Far IR and Microwave Region)			
	4	Weak field Stark effect of Hydrogen atom			
	5	General Considerations in molecular physics, Electronic States of Diatomic Molecules,			
	6	Rotational Spectra (Far IR and Microwave Region)			
16	1	Vibrational Spectra (IR Region)			
	2	Rotator Model of Diatomic Molecule			
	3	Raman Effect, Electronic Spectra.			
	4	Vibrational Spectra (IR Region)			
	5	Rotator Model of Diatomic Molecule			
	6	Raman Effect, Electronic Spectra			