
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/323837314

A Novel approach of data deduplication for distributed storage

Article in International Journal of Engineering & Technology · March 2018

DOI: 10.14419/ijet.v7i2.4.10040

CITATIONS

3
READS

883

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Data deduplication for distributed storage View project

A global survey on data deduplication View project

Shubhanshi Singhal

Technology Education and Research Integrated Institutions

10 PUBLICATIONS 36 CITATIONS

SEE PROFILE

Akanksha Kaushik

The Northcap University

9 PUBLICATIONS 27 CITATIONS

SEE PROFILE

All content following this page was uploaded by Akanksha Kaushik on 02 August 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/323837314_A_Novel_approach_of_data_deduplication_for_distributed_storage?enrichId=rgreq-7614524d75f68dd37eadfd00d4f37f70-XXX&enrichSource=Y292ZXJQYWdlOzMyMzgzNzMxNDtBUzo2NTUyMTM3NDg4MjYxMjZAMTUzMzIyNjUzOTg2Mg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/323837314_A_Novel_approach_of_data_deduplication_for_distributed_storage?enrichId=rgreq-7614524d75f68dd37eadfd00d4f37f70-XXX&enrichSource=Y292ZXJQYWdlOzMyMzgzNzMxNDtBUzo2NTUyMTM3NDg4MjYxMjZAMTUzMzIyNjUzOTg2Mg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Data-deduplication-for-distributed-storage?enrichId=rgreq-7614524d75f68dd37eadfd00d4f37f70-XXX&enrichSource=Y292ZXJQYWdlOzMyMzgzNzMxNDtBUzo2NTUyMTM3NDg4MjYxMjZAMTUzMzIyNjUzOTg2Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/A-global-survey-on-data-deduplication?enrichId=rgreq-7614524d75f68dd37eadfd00d4f37f70-XXX&enrichSource=Y292ZXJQYWdlOzMyMzgzNzMxNDtBUzo2NTUyMTM3NDg4MjYxMjZAMTUzMzIyNjUzOTg2Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-7614524d75f68dd37eadfd00d4f37f70-XXX&enrichSource=Y292ZXJQYWdlOzMyMzgzNzMxNDtBUzo2NTUyMTM3NDg4MjYxMjZAMTUzMzIyNjUzOTg2Mg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shubhanshi-Singhal?enrichId=rgreq-7614524d75f68dd37eadfd00d4f37f70-XXX&enrichSource=Y292ZXJQYWdlOzMyMzgzNzMxNDtBUzo2NTUyMTM3NDg4MjYxMjZAMTUzMzIyNjUzOTg2Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shubhanshi-Singhal?enrichId=rgreq-7614524d75f68dd37eadfd00d4f37f70-XXX&enrichSource=Y292ZXJQYWdlOzMyMzgzNzMxNDtBUzo2NTUyMTM3NDg4MjYxMjZAMTUzMzIyNjUzOTg2Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Technology_Education_and_Research_Integrated_Institutions?enrichId=rgreq-7614524d75f68dd37eadfd00d4f37f70-XXX&enrichSource=Y292ZXJQYWdlOzMyMzgzNzMxNDtBUzo2NTUyMTM3NDg4MjYxMjZAMTUzMzIyNjUzOTg2Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shubhanshi-Singhal?enrichId=rgreq-7614524d75f68dd37eadfd00d4f37f70-XXX&enrichSource=Y292ZXJQYWdlOzMyMzgzNzMxNDtBUzo2NTUyMTM3NDg4MjYxMjZAMTUzMzIyNjUzOTg2Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Akanksha-Kaushik-6?enrichId=rgreq-7614524d75f68dd37eadfd00d4f37f70-XXX&enrichSource=Y292ZXJQYWdlOzMyMzgzNzMxNDtBUzo2NTUyMTM3NDg4MjYxMjZAMTUzMzIyNjUzOTg2Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Akanksha-Kaushik-6?enrichId=rgreq-7614524d75f68dd37eadfd00d4f37f70-XXX&enrichSource=Y292ZXJQYWdlOzMyMzgzNzMxNDtBUzo2NTUyMTM3NDg4MjYxMjZAMTUzMzIyNjUzOTg2Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The-Northcap-University?enrichId=rgreq-7614524d75f68dd37eadfd00d4f37f70-XXX&enrichSource=Y292ZXJQYWdlOzMyMzgzNzMxNDtBUzo2NTUyMTM3NDg4MjYxMjZAMTUzMzIyNjUzOTg2Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Akanksha-Kaushik-6?enrichId=rgreq-7614524d75f68dd37eadfd00d4f37f70-XXX&enrichSource=Y292ZXJQYWdlOzMyMzgzNzMxNDtBUzo2NTUyMTM3NDg4MjYxMjZAMTUzMzIyNjUzOTg2Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Akanksha-Kaushik-6?enrichId=rgreq-7614524d75f68dd37eadfd00d4f37f70-XXX&enrichSource=Y292ZXJQYWdlOzMyMzgzNzMxNDtBUzo2NTUyMTM3NDg4MjYxMjZAMTUzMzIyNjUzOTg2Mg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (2.4) (2018) 46-52

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET
DOI: 10.14419/ijet.v7i2.4.10040

Research paper

A Novel Approach of Data Deduplication for

Distributed Storage

Shubhanshi Singhal1, Akanksha Kaushik 2*, Pooja Sharma 3

1Assistant Professor, TERii, Kurukshetra University, Kurukshetra-136119

2 Assistant Professor, St. Andrews Institute of Technology and Management, Gurugram, M.D.U., Rohtak-124001
3 Lecturer, Government College for Women, Karnal-132001

*Corresponding author E-mail:er.akankshakaushik@gmail.com

Abstract

Due to drastic growth of digital data, data deduplication has become a standard component of modern backup systems. It reduces data

redundancy, saves storage space, and simplifies the management of data chunks. This process is performed in three steps: chunking,

fingerprinting, and indexing of fingerprints. In chunking, data files are divided into the chunks and the chunk boundary is decided by the

value of the divisor. For each chunk, a unique identifying value is computed using a hash signature (i.e. MD-5, SHA-1, SHA-256), known

as fingerprint. At last, these fingerprints are stored in the index to detect redundant chunks means chunks having the same fingerprint

values. In chunking, the chunk size is an important factor that should be optimal for better performance of deduplication system. Genetic

algorithm (GA) is gaining much popularity and can be applied to find the best value of the divisor. Secondly, indexing also enhances the

performance of the system by reducing the search time. Binary search tree (BST) based indexing has the time complexity of 𝜃(log 𝑛)

which is minimum among the searching algorithm. A new model is proposed by associating GA to find the value of the divisor. It is the

first attempt when GA is applied in the field of data deduplication. The second improvement in the proposed system is that BST index tree

is applied to index the fingerprints. The performance of the proposed system is evaluated on VMDK, Linux, and Quanto datasets and a

good improvement is achieved in deduplication ratio.

Keywords: Data Deduplication, Chunking, Fingerprints, Indexing, Genetic Algorithm

1. Introduction

The amount of digital data is increasing exponentially. It is

estimated that 163.2 zettabytes of digital data will be produced in

2025 [1]. In this big data era, management of this data deluge is an

important and challenging task. Data deduplication is a successful

data reduction approach that manages storage space by removing

redundant data [2]. Thus it has increased attention in large-scale

storage systems. It identifies duplicate contents by a

cryptographically secured hash signature like SHA-1, MD-5 and

performs data reduction by eliminating redundant data at chunk-

level. Data deduplication is performed in three key steps: chunking

[3], fingerprinting [4], and indexing of fingerprints [5]. Data

deduplication workflow is shown in figure 1 [6]. Chunking splits

the input data stream into small pieces known as chunks. There are

two different approaches to divide files into chunks: fixed size

chunking and variable size chunking. Chunk size is an important

factor because it decides the performance of the data deduplication

system [7]. Deduplication detection ratio of variable-size chunks is

better than fixed-size chunks.

Various methods like BSW [8], TTTD [9], TTTD-S [10], Byte-

index [11], FastCDC [12] have been proposed to decide the chunk

boundary. The size of chunks is generally decided by divisor ‘D’.

The value of ‘D’ should be optimal to get better results. Genetic

algorithm is an optimization technique based on the Darwinian

theory of evolution [13]. Initially, it starts with a set of randomly

generated chromosomes, then the processes like fitness-based

selection and crossover are carried out to produce the next

generation. During mating, chromosomes are chosen either

randomly or according to their fitness then crossover process

recombines the genetic material to produce the new chromosomes.

This process is repeated either a fixed number of times or meeting

the stopping criteria. By this way, a GA “evolves” a good solution

to a given problem. It is also able to discover the divisor’s value for

each dataset. In this process, first, one-tenth of the dataset is ‘split’

into subparts (the number of subparts ∝ size of the dataset). These

subparts are called as chromosomes. By applying crossover and

mutation operations, the chromosomes are optimized to get optimal

value of divisor ‘D’.

Figure 1: Data Deduplication Workflow

After chunking process, cryptographically secure hash signature

(e.g. MD-5, SHA-1, SHA-256) is applied on chunks to calculate

their fingerprints [14]. This process is known as fingerprinting.

…

Data
Chunks

Files

Indexing
& Storing

Container
s:

Unique

Chunks

File

A
File

B
Metadata

Chunking &

Fingerprinting

http://creativecommons.org/licenses/by/3.0/

47 International Journal of Engineering & Technology

Fingerprint value for each chunk is unique. Only unique chunks are

placed on the disk after verifying their uniqueness using their

fingerprints and redundant chunks are only referenced with old

chunks. Indexing is a way to organize fingerprints on disk. Various

approaches have been proposed for on-disk index-lookup process

but their search time and running cost are high. Indexing should be

fast enough that it can check the uniqueness of any fingerprint in

minimum time. Binary search tree is a good searching algorithm

having search time of 𝜃(log 𝑛). In this proposed work, BST

indexing tree is applied to arrange and search the fingerprints. It

arranges the fingerprints in the form of a tree where fingerprints can

be easily checked that they are unique or not. Hadoop is an open

source framework that is used to manage and perform an operation

on big data [15]. It includes the HDFS, Hadoop common, Hadoop

YARN, and Hadoop map-reduce. The main components of Hadoop

are HDFS and map-reduce. HDFS is a master-slave architecture in

which master contains information of name_node and job tracker.

The slave contains the data node, task tracker, and map-reduce

information. The performance analysis of proposed algorithm is

performed for VMDK [16], Linux [17], and Quanto databases using

Hadoop. The rest of this paper is organized as follows: In section 2,

related work to data deduplication is discussed. Section 3 gives the

idea of genetic algorithms. Binary search tree is discussed in section

4. Section 5 represents the algorithm for proposed architecture. The

experimental results are given in section 6 and in last, the paper is

concluded with a brief summary in section 7.

2. Related Work

In this world, digital data is increasing rapidly. High growth rate of

data causes the storage problem because the storage space is not

increasing in same proportion. Therefore, the issue arises to adjust

all data in the available storage space. So, the techniques like data

compression, Huffman coding, data deduplication are used to

manage the data well. Data compression technique compresses the

data using various compression approaches like LZO [18], LZW

[19] etc. Data deduplication is faster, more scalable, and efficient

than compression approaches. Data deduplication is performed in

two folds. First, identification and elimination of redundancy at

chunk level using techniques like Rabin [20], BUZZ [21]. Second,

identification of duplicate content by calculating hash-based

fingerprints using techniques like MD-5, SHA-1, SHA-256. Data

deduplication removes the duplicate chunks and keeps references

to old chunks.

Data deduplication was proposed in the 2000s to support global

compression in large-scale storage systems at a much coarser

granularity [22]. In the current scenario, data deduplication

techniques are widely used to eliminate duplicacy at chunk level.

First, the file-level deduplication [22] was proposed but later it was

replaced by chunk-level deduplication [14] because of its better

results. Low-bandwidth network file system (LBFS) was proposed

to catch and remove duplicate chunks of variable size [23]. Venti

was also proposed to eliminate duplicate chunks and saves storage

space [14]. Variable-size chunking was employed by LBFS to find

redundancy at chunk level whereas fixed size chunking was used

by Venti. The chunking methods are mainly of two types: fixed size

chunking and variable-size chunking. In fixed size chunking,

constant size chunks are created from input data stream according

to the offset of the content. A minor change in the data file can lead

to the shift of boundaries for all chunk, which tends to generate a

problem called as a boundary-shift problem. The chunks that

contain slightly different content fail to deduplicate [23]. Variable-

size chunking divides the input stream into variable-size chunks

according to the content itself, this solves the problem of boundary-

shift. It is most successful and widely used chunking method. Some

popular variable size chunking algorithms are leap based chunking

[24], bimodal chunking [25], multimodal chunking [26]. A new

CDC algorithm, Asymmetric Extremum (AE) was proposed by

Zhang et al. [27] that mainly focus to improve the chunking

throughput and the chunk size variance. The limitations of Rabin

fingerprint based CDC [20] and MAXP [28] algorithms are

superseded by AE algorithm. After chunking process, the

cryptographically secure hash-based signature is applied on each

chunk to compute its fingerprint [29]. This process is known as

fingerprinting. Fingerprinting technique simplifies the process of

duplicate identification. MD-5 [30], SHA-1 [31], and SHA-256

[32] are widely used cryptographic hash-based signatures that

generate fingerprints to identify the identical chunks. SHA-1 is the

highly used fingerprinting algorithm because its hash collision

probability is very small or to be ignored. Venti [14], LBFS [23],

iDedup [33], MAD2 [34], and DDFS [35] are SHA-1 based

deduplication methods. ZFS [36] and Dropbox [37] are the systems

that use stronger hash algorithm i.e. SHA-256 to reduce the risk of

hash collision. More than 80% of the time overhead can be

attributed to chunking (about 45%) and indexing (about 35%).

3. Genetic Algorithm

John Holland proposed an idea of GA to find the solution of

problems that were computationally intractable [38]. He provided

the theoretical and conceptual essentials related to the design of the

GA. Highly modular nature of GA makes it straightforward to

implement. It is a basically an optimization technique, originally

powered by the Darwin theory of evolution through the genetic

solution. GA operates on a population of artificial chromosomes.

GA is constructed from a number of distinct tasks. Its main tasks

are the chromosomes encoding, the fitness function, selection,

recombination, and the evaluation scheme. GA operates on a

population of chromosomes that are string representative of

solutions to an individual problem. Any particular representation

used for a given problem is called chromosomes. They are basically

strings of finite alphabets. Each chromosome expresses a solution

to a problem and has a fitness value, which measures how good a

solution is to particular problem. The working architecture of

genetic algorithm is shown in figure 2 [39].

Fitness: The fitness function is a mathematical formula that checks

the quality of chromosomes i.e. fitness value, as a solution for given

problem.

Selection: The fitness value is a key factor in the selection of

chromosomes for crossover. The selection operator in GA is applied

for the selection of chromosomes for crossover on the basis of their

fitness. Roulette wheel is a popular selection method that gives

chance to each chromosome according to their fitness value.

Recombination/Crossover: Recombination is the process by which

the selected chromosomes from parent population are recombined

together using one-to-one relationship to produce new

chromosomes for next generation.

Figure 2: Working Architecture of Genetic Algorithm

Stopping

criteria

Initialization

Fitness Assignment

Selection

Crossover

Mutation

False True
Stop

International Journal of Engineering & Technology 48

Mutation: Mutation operator is applied to conserve the genetic

diversity from one generation to next. The mutation value should

be taken in small proportion.

Evolution: The processes of selection and recombination are

repeated until the stopping criteria are not reached.

GA usually performs better than traditional techniques to calculate

the value of divisor ‘D’. Genetic algorithm can manage datasets

with many features. They don’t need specific knowledge about the

problem under study.

4. Binary Search Tree

When the fingerprints or hash values are static, linear indexing is

efficient. In linear indexing, fingerprints are inserted or deleted

rarely. But these changes are frequent in the large-scale storage

system. As the volume of data increases, the total size of

fingerprints will quickly overwhelm the main memory. This arises

the problem of storing and indexing of these fingerprints on the

disk. Indexing also helps in determining duplicate and non-

duplicate data chunks. Accessing throughput to on-disk fingerprint-

index is approximately 1-6MB/s. It is a severe performance

bottleneck in these systems. Therefore, a better indexing technique

must be proposed that reduces search time and computational

overhead. Binary search tree (BST) [40] would be a good way to

store fingerprints. When BST is stored in main memory then the

search and update operations are performed in 𝜃(log 𝑛) time. When

the tree is stored on disk, the depth of tree decides the return time.

It is because all the nodes along the path from the root are visited.

The problem becomes greater if the BST is unbalanced. Deep nodes

in the tree have the potential of causing many disk blocks to be read.

So the arrangement of nodes should be in such way that search

operation should be minimum. This problem can be solved by

balancing the tree after few updates.

5. Proposed Work

From the above discussion, it is clear that chunking and indexing of

fingerprints are very important tasks. The previously proposed

chunking methods like BSW [8], TTTD [9], TTTD-S [10], Byte

index chunking [11], FastCDC [12] etc. are used to calculate the

size of chunks. The chunk-size is a very important factor because it

directly affects the performance of deduplication system. The value

of divisor ‘D’ decides the chunk size. How to fix the value of divisor

‘D’ is an important task. Small size chunks lead to high metadata

overhead because overhead is proportional to the number of chunks

and the problem with larger size chunks is that the deduplication

ratio falls down. The previously proposed techniques do not provide

the optimal value of divisor ‘D’ hence there is need to fulfill this

gap by proposing a new method to find the optimal value of

dynamic divisor ‘D’. The genetic algorithm (GA) is an evolutionary

technique where problems are defined in the form of chromosomes

as a computer program. GA performs predefined tasks on the set of

chromosomes to get best results. The same technique (GA) is

applied to find the value of divisor ‘D’. After the study of data

deduplication literature, it is very clear that the value of divisor

depends upon the redundant content i.e. Divisor ∝ Similarity. For

example, if the similarity between two files is 25% then the chunk

size should be small to get more redundancy. If the similarity

between two files is 75% then large size chunks can easily find

redundancy and target shifts to reduce the number of comparisons.

From the above example, It is very clear that the value of divisor

should be decided on the basis of similarity in datasets. Sϕrenson-

Dice coefficient, a popular method, is used to calculate the

similarity using the mathematical expression.

S =
2𝐶𝐼

𝐶𝑥 + 𝐶𝑦
⁄ (1)

where S is the similar content. 𝐶𝐼 is the number of common words

found in both files. 𝐶𝑥 is the total count of words in file x. 𝐶𝑦 is the

total count of words in file y. for example:

Figure 3: The working architecture of GA based proposed algorithm

Client

Data preprocessing

Client

Data preprocessing

Data

Routing

Strategy

F
in

g
erp

rin
t

D
ata

F
in

g
erp

rin
t

D
ata

Network (TCP/IP)

Dedup

Engine

Fingerprint/ Data

Container

Data Server

Dedup

Engine

Fingerprint/ Data

Container

Data Server MetaData Server

Cluster

Management

MetaData

Management

Log

Management

D
istrib

u
ted

 F
ile S

y
ste

m

49 International Journal of Engineering & Technology

Ram is a boy.

He is a boy.

Each set has four words, the intersection of these two sets results

three elements i.e is, a, boy. The number of elements in each string

is 4. Then Sϕrenson-Dice coefficient based similarity is:

Similarity S = 2 ∗ 3
4 + 4⁄ = 0.75 𝑖. 𝑒. 75%

The same method also works for the finding similarity between

words. The various available models like unigram/ bigram/ trigram

or complete string matching are used for searching common

elements between two streams.

n i g h t

n a c h t

The set of bigrams is searched in each word

ni ig gh ht

na ac ch ht

Each set has four elements, the intersection of these two sets has

only one element ‘ht’. The similarity is calculated based on

Sϕrenson-Dice coefficient

Similarity S = 2 ∗ 1
4 + 4⁄ = 0.25 𝑖. 𝑒. 25%

The stopping criteria for GA algorithm are the optimal value of

dynamic single divisor ‘D’. Good chunk-size variances improve

redundancy detection by minimum computational overhead.

Therefore, the value of divisor ‘D’ should exist in the pre-defined

range where it can provide good size chunks. Sϕrenson-Dice

coefficient is used to decide the range i.e. the minimum and

maximum value for divisor according to the similarity between

datasets. Initially, the min_value and max_value is decided by the

minimum and maximum value of the similarity among the

chromosomes respectively. The worst fit and best fit chromosomes

are selected. The similarity value of worst-fit fixes the lower-bound

(i.e. min value) of the chunk after multiplying by a factor and

resulted value is represented by min_value. Similarly, the upper

bound of the chunk is also calculated by multiplying a factor into

similarity value of best-fit chromosome. The value of factor/s

depends on the nature of the problem. Minimum and maximum

values are the range in which the value of dynamic divisor can exist.

After that, a random value for divisor ‘D’ is taken and proposed GA

algorithm is applied on it. After each iteration, the value of divisor

‘D’ is updated and checked until the stopping criteria are not met.

For example The similarity value of the genetic population is

calculated and let the worst-fit chromosome’s similarity value is

25% and best-fit chromosome’s similarity value is 65%. Let factor1

= 2 and factor2 = 40 is taken then min_value = 25 * 2 = 50 and

max_value 65 * 40 = 2600, therefore, the value of dynamic divisor

D should lie between 50 to 2600 bytes. The main advantage of this

algorithm is its flexibility means the range of divisor D i.e.

min_value and max_value can be adjusted according to nature of

the problem.

5.1 Algorithm

Begin

1. divide dataset into the genetic population/chromosomes

2. randomly initialize the position to each chromosome

3. while maximumcriteria or stoppingcondition is not met

do

3.1 evaluate the fitness of chromosomes according to

eqn. 1

3.2 apply roulette-wheel method to select

chromosomes from the population

3.3 perform crossover on selected chromosome to

generate new population

3.4 perform mutation on a few chromosomes of new

generation

3.5 replace worst fit chromosomes with new population

and update divisor D.

repeat from step 3.

5.2 Flowchart

Figure 4: The flowchart of the proposed algorithms’ chunking mechanism

Figure 5: Step-by-step working of data deduplication system for proposed

GA-based algorithm.

If min_value < D &&

D < max_value

Convert the dataset into chromosomes

Calculate fitness of each chromosome using

Sϕrenson-Dice coefficient

Apply roulette-wheel method to select

chromosomes for crossover based on their fitness

values.

Perform crossover to generate new chromosomes

Perform the mutation on few new chromosomes

True

Stop

False

Start

Replace worst fit chromosomes with new population

Update the value of divisor ‘D’

Input dataset

Non-redundant Data

FastBUZ

GA Based Proposed algorithm

Chunking fp mod D = R

SHA-1

Collision-free Hash Value Generator

BST based indexing for fingerprint

storage and redundancy detection

International Journal of Engineering & Technology 50

Indexing is an important phase where fingerprints are organized in

a structured way. It is performed to check the uniqueness of data

chunks and store or eliminate them. The techniques like DDFS [35]

and Sparse Indexing [41] provides a powerful indexing mechanism

but their number of comparisons are high. Binary search tree based

indexing is gaining good attention in image vision task [40]. Binary

search tree is a well-organized structure where lesser elements are

always arranged in the left of root and greater elements are always

fixed in the right of the root. It has searching and updating time of

𝜃(log 𝑛). Hence by applying this scheme, the deduplication process

will lead to fast searching and updating. The same indexing is used

in proposed system to reduce time complexity and number of

comparisons.

MAP Function:

1. Map function reads the input data stream.

2. With the help of proposed GA based algorithm, the input data

stream is split into dynamic variable size chunks. In chunking,

the fastBUZ rolling hash function is used due to its less CPU

overhead.

3. Store the chunks and generate the fingerprints for each chunk

using SHA-1.

Reduce function:

1. Read the fingerprint of each chunk.

2. Compare the fingerprint by BST based index tree.

3. Store the unique chunks and update BST index tree by their

fingerprints.

4. Eliminate the redundant chunk and reference them by old

chunk.

6. Experimental Results and Analysis

The effectiveness and efficiency of the proposed system are

evaluated by performing experiments on three different sized

datasets. Three real-world datasets: VMDK, Linux, and Quanto are

used for evaluation purpose. Each dataset is divided into variable-

size chunks. All the experiments are conducted on a single node

cluster of Hadoop system. BSW and TTTD are designed for

primary and secondary storage (backup) but today data volume is

very large and stored on distributed storage.

The specification used for experiments are given below:

• Operating System: Linux

• Version: Ubuntu 17.04LS

• Tool: Hadoop 2.8.0

• CPU: Intel® Core i3 (3.2GHz)

• RAM: 6GB

• HDD: 2TB, Seagate, 7200RPM

VMDK, a standard dataset, is commonly used in real-world [16]. It

consists of 102 full backups. Each backup is 14.48GB on average

and 89-95% are identical to its adjacent backups. Each backup

contains nearly 16% self-referenced chunks and thus out-of-order

containers are dominant. Linux [17] is a generally used public

dataset. 258 consecutive versions of unpacked Linux kernel sources

are zipped together. The average size of each version is 413MB.

The consecutive versions are generally 99% identical. Quanto is a

small-sized dataset having size 464MB only. 16 consecutive back-

ups of general files are tar together. The average size of each version

is 25MB. Its consecutive versions are generally 90% identical. All

the experiments on each dataset are performed independently.

The 1/10th of the dataset is taken to form the chromosomes and

number of chromosomes and their size, both are decided according

to size of the dataset. In short, the number of chromosomes are

proportional to the size of the dataset. The selection criterion is

decided to get maximum deduplication ratio at the cost of minimum

metadata overhead. Initially, deduplication ratio and metadata

overhead are calculated. The crossover operation is performed on

selected chromosomes that are selected by roulette-wheel method

[39]. The selection rate is moderate i.e. 10-15% of total population.

The two-point crossover is applied where first and last four bits

remain same and rest of the portion is swapped with the second one.

After that mutation is performed on the chromosomes where two

random bits are swapped together. Mutation rate should be less i.e.

up to 5% only. Only the limited number of chromosomes are

mutated i.e. one-tenth of the new population. After this, the same

processes i.e. fitness calculation, chromosomes selection,

crossover, and mutation are performed repeated on number of

times. It is directly related to how much better solution is required.

Higher the number of iterations, better the deduplication ratio.

There should be a good trade-off between number of iteration and

deduplication ratio because unnecessary iteration leads to

computational overhead. As the optimal value of ‘D’ is retrieved,

the iteration process should be stopped and this value is used to split

the dataset into the chunks. The cryptographically secured hash

signature (i.e. SHA-1) is applied to generate the fingerprints from

chunks. Then these fingerprints are indexed in the form of binary

search tree. By this way, complete deduplication process is

performed on the datasets.

The characteristics of these datasets are shown in table 1. Table 2

shows the parameter configuration for the BSW [8], TTTD [9], and

the proposed algorithm. Chunk size distributions of BSW, TTTD

and the proposed algorithm is shown in table 3. The deduplication

ratio of BSW, TTTD, and the proposed algorithm is shown in table

4. In table 5, the number of disk I/O operations for the proposed

algorithm are compared with DDFS [35]. Figure 6 shows the graph

for chunk size distribution of BSW, TTTD and the proposed

algorithm. The graph for deduplication ratio analysis of BSW,

TTTD, and proposed algorithm is shown in figure 7. Figure 8 shows

the graph of percentage of total number of comparisons in DDFS

and proposed algorithm.

Table 1: Characteristics of VMDK, Linux, and Quanto dataset for proposed

algorithm

Dataset

Name

Total

Size

Number

of back-

ups

Deduplication

ratio

Average

chunk size

VMDK 0.72TB 51 53.37 10.3KB
Linux 104GB 258 78.13 11.9KB

Quanto 464MB 16 79.07 11.5KB

Table 2: Parameters configuration for the BSW, TTTD and proposed

algorithm

Algorith

m

Windo

w Size

(Bytes)

Main

Diviso

r

Second

Diviso

r

Maximum

Threshold

Minimum

Threshold

BSW 48 1000 N/A N/A N/A

TTTD 48 540 270 2800 460
Proposed 48 470 N/A 2300 600

Table 3: Chunk size distributions of the BSW, TTTD, and the proposed algorithm

Interval (Bytes) BSW TTTD Proposed

VMDK Linux Quanto VMDK Linux Quanto VMDK Linux Quanto

<48(%) 0 0 NA 01.72 01.03 2.86 0 0 NA
48-459(%) 35.29 40.82 42.63 40.16 31.76 43.32 3.15 2.63 3.67

460-799(%) 18.72 20.01 21.45 27.23 21.68 28.57 10.34 9.81 11.43

800-1199(%) 15.46 14.59 15.01 13.82 14.55 13.59 30.66 30.11 31.37
1200-1599(%) 11.13 8.17 10.37 7.58 9.89 6.28 25.47 26.12 25.74

1600-1999(%) 7.85 4.56 6.18 4.03 7.36 2.47 18.22 20.07 18.01

2000-2399(%) 4.21 3.79 3.99 2.91 6.73 1.41 8.73 7.18 6.85
2400-2799(%) 2.97 2.87 0.29 2.43 5.77 1.19 2.97 2.64 2.17

>=2800(%) 4.37 5.19 0.08 0.12 1.23 0.31 0.46 1.44 0.76

51 International Journal of Engineering & Technology

Figure 6: Chunk size distribution of BSW, TTTD, and the proposed algorithm

Table 4: Deduplication ratio of the BSW, TTTD, and the proposed algorithm

Interval (Bytes) BSW TTTD Proposed

VMDK Linux Quanto VMDK Linux Quanto VMDK Linux Quanto

<48(%) NA NA NA 0.29 0.35 0.32 0 0 NA

48-459(%) 0.63 0.71 0.67 0.70 0.76 0.73 0.80 0.82 0.81
460-799(%) 0.58 0.64 0.61 0.62 0.70 0.66 0.77 0.81 0.79

800-1199(%) 0.52 0.60 0.56 0.58 0.66 0.62 0.74 0.78 0.76

1200-1599(%) 0.45 0.54 0.49 0.51 0.57 0.54 0.69 0.75 0.72
1600-1999(%) 0.38 0.47 0.42 0.44 0.50 0.47 0.65 0.71 0.68

2000-2399(%) 0.32 0.41 0.35 0.38 0.44 0.41 0.60 0.66 0.63

2400-2799(%) 0.26 0.34 0.29 0.37 0.41 0.39 0.51 0.57 0.55
>=2800(%) 0.19 0.26 0.21 0.34 0.38 0.36 0.39 0.46 0.43

Figure 7: Deduplication ratio analysis of the BSW, TTTD and the proposed algorithm

Table 5: Number of disk I/O operations performed with or without summary vector and locality preserved caching, and proposed BST based indexing.

 VMDK Linux Quanto

disk I/Os % of total # disk I/O % of total % disk I/O % of total

No Summary vector and No Locality Preserved

Caching

90,208,831 100% 12,092,322 100% 5,368 100%

Summary Vector Only 75,207,102 83.37% 9,858,870 81.53% 4,438 82.69%

Locality Preserved Caching 15,894,796 17.62% 2,280,611 18.86% 978 18.23%

Summary Vector and Locality Preserved Caching 893,067 0.99% 55,624 0.46% 30 0.57%

Proposed Algorithm (BST based Indexing) 6,440,910 7.14% 1,799,337 14.88% 449 8.37%

Figure 8: Percentage of total number of comparisons of DDFS and proposed algorithm.

0

10

20

30

40

50

BSW VMDK BSW Linux BSW Quanto TTTD VMDK TTTD Linux
TTTD Quanto Proposed VMDK Proposed Linux Proposed Quanto

0

0.2

0.4

0.6

0.8

1

BSW VMDK BSW Linux BSW Quanto TTTD VMDK TTTD Linux

TTTD Quanto Proposed VMDK Proposed Linux Proposed Quanto

0%

20%

40%

60%

80%

100%

120%

No Summary vector

and No Locality

Preserved Caching

Summary Vector Only Locality Preserved

Caching

Summary Vector and

Locality Preserved

Caching

Proposed Algorithm

(BST based Indexing)

VMDK % of total Linux % of total Qunato % of total

International Journal of Engineering & Technology 52

7. Conclusion and Future Scope

In nutshell, the chunking schemes face the problem of very large

and small chunk size. Another problem is about high disk I/O

operations in indexing. The proposed approach mainly concentrates

on chunking and indexing in distributed data deduplication system.

The proposed approach uses GA to find the value of dynamic single

divisor D for cut-points of the chunk. GA’s main focus is to achieve

good deduplication ratio but it takes a little bit extra time. The

systems like DDFS, Sparse-indexing scheme work mainly on

decreasing the number of comparisons and their average

comparisons are 18% and 26% respectively. However, there is need

to maintain a separate index for each node. The proposed algorithm

takes only 7-15% comparisons; this is a remarkable achievement.

If BST-indexing is applied on large scale system, it may not offer

full performance due to very large index size. Moreover, DDFS and

Sparse-indexing work on a single system and proposed model work

on the distributed system. Finally, the result shows that the GA-

based proposed system achieved better deduplication ratio and

indexing than earlier systems. In future, other evolutionary

techniques or advanced versions of GA may be applied to optimize

the computational cost.

References

[1] D. Reinsel, J. Gantz, and J. Rydning, "Data Age 2025: The Evolution
of Data to Life-Critical," Seagate, An IDC White Paper2017.

[2] Q. He, Z. Li, and X. Zhang, "Data deduplication techniques," in

Future Information Technology and Management Engineering
(FITME), 2010 International Conference on, 2010, pp. 430-433.

[3] C. Bo, Z. F. Li, and W. Can, "Research on chunking algorithms of
data de-duplication," in Proceedings of the 2012 International

Conference on Communication, Electronics and Automation
Engineering, 2013, pp. 1019-1025.

[4] V. Henson, "An Analysis of Compare-by-hash," in HotOS, 2003, pp.
13-18.

[5] S. He, C. Zhang, and P. Hao, "Comparative study of features for

fingerprint indexing," in Image Processing (ICIP), 2009 16th IEEE
International Conference on, 2009, pp. 2749-2752.

[6] W. Xia, H. Jiang, D. Feng, F. Douglis, P. Shilane, Y. Hua, et al., "A
comprehensive study of the past, present, and future of data

deduplication," Proceedings of the IEEE, vol. 104, pp. 1681-1710,
2016.

[7] F. Guo and P. Efstathopoulos, "Building a High-performance

Deduplication System," in USENIX annual technical conference,
2011.

[8] A. Venish and K. Siva Sankar, "Study of Chunking Algorithm in
Data Deduplication," in International Conference on Soft Computing
Systems (ICSCS), 2016, pp. 13-20.

[9] K. Eshghi and H. K. Tang, "A framework for analyzing and

improving content-based chunking algorithms," Hewlett-Packard
Labs Technical Report TR, vol. 30, 2005.

[10] T.-S. Moh and B. Chang, "A running time improvement for the two

thresholds two divisors algorithm," in Proceedings of the 48th
Annual Southeast Regional Conference, 2010, p. 69.

[11] I. Lkhagvasuren, J. M. So, J. G. Lee, C. Yoo, and Y. W. Ko, "Byte-
index Chunking algorithm for data deduplication system,"

International Journal of Security and its Applications, vol. 7, pp.
415-424, 2013.

[12] W. Xia, Y. Zhou, H. Jiang, D. Feng, Y. Hua, Y. Hu, et al., "FastCDC:

a Fast and Efficient Content-Defined Chunking Approach for Data
Deduplication," in USENIX Annual Technical Conference, 2016, pp.
101-114.

[13] J. J. Grefenstette, "How genetic algorithms work: A critical look at

implicit parallelism," in Proc. 3rd Int. Joint Conf. on Genetic
Algorithms (ICGA89), 1989.

[14] S. Quinlan and S. Dorward, "Venti: A New Approach to Archival
Storage," in FAST, 2002, pp. 89-101.

[15] T. White, Hadoop: The definitive Guide: O'Reilly Media, Inc, 2012.

[16] V. Tarasov, A. Mudrankit, W. Buik, P. Shilane, G. Kuenning, and E.

Zadok, "Generating Realistic Datasets for Deduplication Analysis,"
in USENIX Annual Technical Conference, 2012, pp. 261-272.

[17] T. L. Foundation, "The Linux Kernel Archives," ed, 2017.

[18] M. Oberhumer, "LZO real-time data compression library," in User
Manual for LZO, 0.28 ed, 1997.

[19] M. R. Nelson, "LZW data compression," Dr. Dobb's Journal, vol.
14, pp. 29-36, 1989.

[20] A. Z. Broder, "Some applications of Rabin’s fingerprinting method,"
in Sequences II, ed: Springer, 1993, pp. 143-152.

[21] J. D. Cohen, "Recursive hashing functions for n-grams," ACM
Transactions on Information Systems (TOIS), vol. 15, pp. 291-320,
1997.

[22] W. J. Bolosky, S. Corbin, D. Goebel, and J. R. Douceur, "Single

instance storage in Windows 2000," in Proceedings of the 4th
USENIX Windows Systems Symposium, 2000, pp. 13-24.

[23] A. Muthitacharoen, B. Chen, and D. Mazieres, "A low-bandwidth

network file system," in ACM SIGOPS Operating Systems Review,
2001, pp. 174-187.

[24] C. Yu, C. Zhang, Y. Mao, and F. Li, "Leap-based content defined
chunking—theory and implementation," in Mass Storage Systems
and Technologies (MSST), 2015 31st Symposium on, 2015, pp. 1-12.

[25] E. Kruus, C. Ungureanu, and C. Dubnicki, "Bimodal Content
Defined Chunking for Backup Streams," in Fast, 2010, pp. 239-252.

[26] I. Lkhagvasuren, J. M. So, J. G. Lee, and Y. W. Ko, "Multi-level
Byte Index Chunking Approach for File Synchronization," 2013.

[27] Y. Zhang, H. Jiang, D. Feng, W. Xia, M. Fu, F. Huang, et al., "AE:

An asymmetric extremum content defined chunking algorithm for
fast and bandwidth-efficient data deduplication," in Computer

Communications (INFOCOM), 2015 IEEE Conference on, 2015, pp.
1337-1345.

[28] D. Teodosiu, N. Bjorner, Y. Gurevich, M. Manasse, and J. Porkka,

"Optimizing file replication over limited-bandwidth networks using
remote differential compression," 2006.

[29] D. T. Meyer and W. J. Bolosky, "A study of practical deduplication,"
ACM Transactions on Storage (TOS), vol. 7, p. 14, 2012.

[30] J. Black, "Compare-by-Hash: A Reasoned Analysis," in USENIX
Annual Technical Conference, General Track, 2006, pp. 85-90.

[31] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov,
"The first collision for full SHA-1," in Annual International
Cryptology Conference, 2017, pp. 570-596.

[32] A. W. Appel, "Verification of a cryptographic primitive: SHA-256,"

ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 37, p. 7, 2015.

[33] K. Srinivasan, T. Bisson, G. R. Goodson, and K. Voruganti, "iDedup:

latency-aware, inline data deduplication for primary storage," in
FAST, 2012, pp. 1-14.

[34] J. Wei, H. Jiang, K. Zhou, and D. Feng, "MAD2: A scalable high-
throughput exact deduplication approach for network backup

services," in Mass Storage Systems and Technologies (MSST), 2010
IEEE 26th Symposium on, 2010, pp. 1-14.

[35] B. Zhu, K. Li, and R. H. Patterson, "Avoiding the Disk Bottleneck in

the Data Domain Deduplication File System," in Fast, 2008, pp. 1-
14.

[36] ZFS, ed, 2012.

[37] I. Drago, M. Mellia, M. M Munafo, A. Sperotto, R. Sadre, and A.

Pras, "Inside dropbox: understanding personal cloud storage
services," in Proceedings of the 2012 Internet Measurement
Conference, 2012, pp. 481-494.

[38] J. H. Holland, Adaptation in natural and artificial systems: an

introductory analysis with applications to biology, control, and
artificial intelligence: MIT press, 1992.

[39] N. M. Razali and J. Geraghty, "Genetic algorithm performance with

different selection strategies in solving TSP," in Proceedings of the
world congress on engineering, 2011, pp. 1134-1139.

[40] L. Brown and L. Gruenwald, "Tree-based indexes for image data,"
Journal of Visual Communication and Image Representation, vol. 9,
pp. 300-313, 1998.

[41] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezis, and

P. Camble, "Sparse Indexing: Large Scale, Inline Deduplication
Using Sampling and Locality," in Fast, 2009, pp. 111-123.

View publication stats

https://www.researchgate.net/publication/323837314

